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Abstract

The Boltzmann equation is a integro-differential equation which describes
the dynamics of a rarefied gas. It is one of the fundamental equations of
statistical physics, and despite a long history it remains far from fully under-
stood. In this talk, we will give a basic overview of the Boltzmann equation.
We will give a heuristic derivation from first physical principles, discuss the
basic properties of solutions, and briefly describe some of the interesting
mathematical problems surrounding it. Along the way, we will prove the
second law of thermodynamics and learn what temperature is.

1 Derivation of the Boltzmann equation
These notes are based on the excellent survey articles [1] and [2], which are far
more comprehensive and delve into much more material.

Consider a gas of N identical particles in R3, which we model temporarily as
hard spheres of a small radius r. We assume no external forces are active. The mo-
tion of the particles is governed by classical mechanics, i.e. they are determined
by Newton’s laws of motion. Therefore each particle moves in a straight line at
constant speed, until it collides with another particle; the post-collisional trajecto-
ries are determined by assuming that all collisions are perfectly elastic (preserving
momentum and kinetic energy).

We will take N large, but we assume also that the gas is rarefied: the average
distance a particle traverses between two consecutive collisions is non-negligible
relative to a characteristic length. Intuitively, this means that the gas is dilute
enough that binary interactions between particles are the dominant interactions
(ternary and higher-order interactions can be neglected); quantitatively, this means
Nr3� 1 and Nr2 ∼ 1. This is a major assumption: in particular, it implies that
the standard equations of fluid dynamics, the Navier-Stokes and Euler equations,

1



do not apply. Our goal is to derive an equation that describes the dynamics of this
ensemble of particles.

Each particle (say with label (i)) is described by 6 coordinates: 3 coordinates
for the position x(i), and 3 for the momentum v(i). The equations of motion that
govern the gas are a system of 6N fully coupled ODEs; as N is assumed large, this
system of ODEs is completely impractical for any computational purposes. We
therefore adopt a statistical approach to describing the particle configuration, by
introducing the one-particle distribution function P(1)(t,x,v). P(1)(t,x,v) is the
probability density of finding a fixed particle (say the particle labeled by (1)) at
the phase-space point (x,v) ∈ R3×R3 at time t ∈ R. It can also be interpreted
as analogous to the physical density of particles in phase space. Of course, with
N fixed, P(1) is a finite sum of delta masses; the hope is that in a scaling limit
as N→ ∞, P(1) can be effectively described by a single measurable function, for
which we have a closed evolution equation. This equation will be the Boltzmann
equation, and our goal in this section is to derive it under fairly basic assumptions.

1.1 The basic setup
We first assume that particles never undergo collisions. Under this scenario, since
there are no external forces, all particles move in a straight line at constant speed,
with the speed and direction given by the particle’s momentum. Therefore the
dynamics are given by simple transport, and the governing equation for the distri-
bution function is given by

∂tP(1)+ v ·∇xP(1) = 0.

However, obviously this equation needs to be adjusted in the presence of colli-
sions. This adjustment takes the form of two additional terms,

∂tP(1)+ v ·∇xP(1) = G−L. (1.1)

G and L denote the gain and loss terms respectively. L(t,x,v) dxdvdt is the ex-
pected number of particles whose position and momenta are in the ranges [x,x+
dx] and [v,v+ dv] at time t, but leave these ranges at some time in the interval
[t, t +dt] due to a collision in this interval. G(t,x,v) dxdvdt is the expected num-
ber of particles whose position and momenta are outside the ranges [x,x+dx] and
[v,v+ dv] at time t, but enter these ranges at some time in the interval [t, t + dt].
Therefore L gives the net loss of particles at a certain location in phase space, and
G the net gain. Our goal is to understand the form of G and L; this is where the
physics of the collisions will enter.
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1.2 Elastic collisions of hard spheres
Let us consider a collision between two particles. Prior to the collision, we de-
scribe the first particle by its phase-space coordinates (x,v); the second we de-
scribe similarly by (x∗,v∗). After the collision, the first particle’s coordinates will
be denoted (x′,v′) and the second particle’s coordinates will be denoted (x′∗,v

′
∗).

We assume that collisions are localized in spacetime. That is, a collision is an
event that takes place at a single point in space, and the duration of the interaction
is effectively instantaneous, so that the two particles do not influence each others’
trajectories prior to and after the instant of collision.

We also assume that collisions are perfectly elastic: they preserve momentum
and kinetic energy. This means that

v+ v∗ = v′+ v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2.
(1.2)

Simple manipulations show that this implies that v,v∗,v′,v′∗ lie on a sphere cen-
tered at v+v∗

2 = v′+v′∗
2 of radius |v−v∗|

2 = |v′−v′∗|
2 . In fact, the four vectors form the

vertices of a rectangle. Therefore it is often convenient to write the post-collisional
momenta v′ and v′∗ in the σ -representation:

v′ =
v+ v∗

2
+
|v− v∗|

2
σ ,

v′∗ =
v+ v∗

2
− |v− v∗|

2
σ ,

(1.3)

where σ ∈ S2.

1.3 The loss and gain terms
We introduce the two-particle distribution function P(2)(t,x,x∗,v,v∗). This func-
tion is the probability density of finding, at time t, the first particle at the phase-
space location (x,v) and a second fixed particle at (x∗,v∗).

With this we can now give a count of the loss term L. We consider particle (1),
whose phase space distribution is given by P(1), and which is currently located in
the range [x,x+ dx] and [v,v+ dv]. By shifting our reference frame, we imagine
particle (1) to be a sphere at rest; then in this reference frame, particle (i) has
momentum vi− v. To simplify the calculation of collisions, we can also imagine
this particle to be a sphere of radius 2r, by imagining all other particles to be point
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particles. Then a particle with coordinates (x∗,v∗) collides with particle (1) if x∗
lies on the sphere of radius 2r centered at x.

For a fixed particle (i), any collision with particle (1) will send particle (1)
outside of the range [x,x+ dx], [v,v+ dv]. Therefore to calculate L we simply
need to count the expected number of collisions of particle (1) with the remaining
N−1 particles. Since all particles are identical, we find that L = (N−1)`, where
` is the expected number of collisions with a single fixed particle, say particle (2).

So how many collisions with particle (1) can particle (2) contribute? Since we
are fixing the phase-space coordinates of particle (1) to be (x,v), the phase-space
distribution of particle (2) is simply the two-particle distribution P(2) conditioned
on particle (1) having coordinates (x,v); this is precisely P(2)(t,x,x∗,v,v∗). At the
moment of collision we have x∗ = x+ 2rn where n ∈ S2. Conditioning on this
as well, the momentum distribution of particle (2) at the moment of collision is
P(2)(t,x,x+2rn,v,v∗).

Suppose we count the collisions that occur in an infinitesimal area (2r)2dn on
the sphere of radius 2r. If we definitely know that particle (2) has pre-collisional
momentum v∗, then (using a change of inertial frame) the momentum of particle
(2) relative to particle (1) is v∗−v. Under this assumption, particle (2) can collide
with the area (2r)2dn in the time interval [t, t+dt] if and only if it lies in a (slanted)
cylinder over the base (2r)2dn of height |(v∗− v) ·n|dt. Therefore the number of
collisions of particle (2) with particle (1), occurring on an area dS = (2r)2dn on
the sphere of radius 2r, when the coordinates lie in the ranges [x,x+dx], [v,v+dv],
[x∗,x∗+dx∗], [v∗,v+dv∗], and [t, t +dt] is given by

P(2)(t,x,x+2rn,v,v∗)|(v∗− v) ·n|(2r)2dndxdvdv∗dt.

Integrating over all possible locations on the sphere (all possible collision loca-
tions) and all possible momenta of particle (2), we obtain

` dxdvdt = dxdvdt
∫
R3

∫
B−

P(2)(t,x,x+2rn,v,v∗)(2r)2|(v∗− v) ·n| dndv∗. (1.4)

Here B− is the hemisphere (v∗− v) ·n < 0, indicating that particles must be mov-
ing closer together before collision. Integrating, we therefore find that the loss
term is given by

L = (N−1)(2r)2
∫
R3

∫
B−

P(2)(t,x,x+2rn,v,v∗)|(v∗− v) ·n| dndv∗. (1.5)

The gain term is calculated similarly, but the integration is over B+, the hemi-
sphere (v∗− v) · n > 0, indicating that the particles are moving away from each
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other after collision. Therefore the gain term takes the form

G = (N−1)(2r)2
∫
R3

∫
B+

P(2)(t,x,x+2rn,v,v∗)|(v∗− v) ·n| dndv∗,

We now assume, on physical grounds, that the distribution P(2) is continuous at a
collision, that is,

P(2)(t,x,x∗,v,v∗) = P(2)(t,x,x∗,v′,v′∗).

Inserting this into the gain term, and making the change of variable n 7→ −n, the
gain term takes the form

G = (N−1)(2r)2
∫
R3

∫
B−

P(2)(t,x,x+2rn,v′,v′∗)|(v∗− v) ·n| dndv∗, (1.6)

Recalling the rarefied gas assumptions Nr3� 1 and Nr2 ∼ 1, we now take a
scaling limit as N→∞, σ → 0, and Nr2→C < ∞. Then absorbing constants, and
assuming some continuity on P(2), we find that

L≈C
∫
R3

∫
B−

P(2)(t,x,x,v,v∗)|(v∗− v) ·n| dndv∗. (1.7)

and
G≈C

∫
R3

∫
B−

P(2)(t,x,x,v′,v′∗)|(v∗− v) ·n| dndv∗, (1.8)

This scaling limit is known as the Boltzmann-Grad limit; it describes the asymp-
totic regimes in which the Boltzmann equation can be expected to accurately de-
scribe the dynamics.

1.4 The molecular chaos assumption
So far we are not much better than where we started; after all, the unknown func-
tion we seek is P(1), and we have written down the gain and loss terms in terms
of another function P(2), which we also do not understand. The way past this is
Boltzmann’s main insight. Since the number of particles N is large, for any two
fixed particles a collision between the two is a rare event. Instead of tracking in-
dividual collisions, we now consider collisions to be random events, consisting of
an interaction between randomly chosen particles. We also assume that the posi-
tions and momenta of distinct pre-collision particles are uncorrelated. This can be
written in the form

P(2)(t,x,x∗,v,v∗) = P(1)(t,x,v)P(1)(t,x∗,v∗)
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for pre-collision particles, i.e. (v∗− v) ·n < 0. This enables us to rewrite the loss
term as

L =C
∫
R3

∫
B−

P(1)(t,x,v)P(1)(t,x,v∗)|(v∗− v) ·n| dndv∗.

The assumption that pre-collision particles have uncorrelated phase-space coordi-
nates (or specifically, momenta) does not directly imply a similar reduction for G.
This is because G is written in terms of the post-collision two-particle momenta.
However, because the density is assumed to be continuous at a collision, we can
simply rewrite the post-collision density in terms of the pre-collision momenta,
and then proceed as for the loss term. Under this assumption, the gain term takes
the form

G =C
∫
R3

∫
B−

P(1)(t,x,v′)P(1)(t,x,v′∗)|(v∗− v) ·n| dndv∗.

The assumptions we have made are highly nontrivial. From the assumption
that pre-collision momenta are uncorrelated, and continuity of the density at the
time of collision, we have concluded that the post-collision momenta are also
uncorrelated. Boltzmann in fact assumed this directly; this is the molecular chaos
hypothesis.

Clearly, this is nonsense from a rigorous probabilistic standpoint: even if pre-
collision momenta are uncorrelated, the moment two particles collide their post-
collision momenta must be correlated. The molecular chaos assumption must
therefore be interpreted as a statement that these correlations are negligible in the
scaling limit. Through it, we in fact leave the realm of strictly classical mechanics,
as we will see in the discussion of the H-theorem.

In any case, we now have the loss and gain terms in terms of P(1) only, so the
system can finally be closed. Rescaling to eliminate the constant C, and using f
to denote P(1) from here onward, we are at last able to write down the Boltzmann
equation for hard spheres:

∂t f + v ·∇x f =
∫
R3

∫
B−

[ f ′ f ′∗− f f∗]|(v∗− v) ·n|dndv∗. (1.9)

Here we adopt the standard notational convention

f = f (t,x,v), f∗ = f (t,x∗,v∗), f ′ = f (t,x′,v′), f ′∗ = f (t,x′∗,v
′
∗).

We derived this equation in the context of elastic collisions between hard spheres.
However, in principle, we can perform the same analysis for other physical situa-
tions where the inter-particle interactions are of a different nature, such as charged
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particles interacting under the Coulomb force. Therefore it is common to study
the general Boltzmann equation

∂t f + v ·∇x f =
∫
R3

∫
S2
[ f ′ f ′∗− f f∗]B(n, |v− v∗|)dndv∗. (1.10)

The function B = B(n, |v−v∗|) is called the collision kernel, and its form depends
on the physics of the particle interactions under consideration. Two important ex-
amples of collision kernels are the hard-sphere collision kernel derived previously,
and Coulomb interaction kernel

B(n, |v− v∗|) =
1

|v− v∗|3 sin4(θ/2)
,

where θ is the angle between n and v− v∗.

2 Basic properties of the Boltzmann equation
We now study the basic properties of the Boltzmann equation (1.10). It is often
written in the form

∂t f + v ·∇x f = Q( f , f )

where
Q( f , f )(v) =

∫
R3

∫
S2
[ f ′ f ′∗− f f∗]B(n, |v− v∗|)dndv∗ (2.1)

is known as the collision integral.

2.1 Collision invariants
Recalling that f has the interpretation as a probability density or density of parti-
cles, it is natural to study quantities of the form∫

R3
f (t,x,v)φ(v) dv,

as these have interpretations as expectations. Using the equation and differentiat-
ing under the integral sign, we obtain the expression

∂t

∫
R3

f φ dv+ v ·
∫
R3

φ∇x f dv =
∫
R3

Q( f , f )φ dv.

7



Therefore it is important to understand integrals of the form
∫

Q( f , f )φ dv. A
basic property of the collision integral is that it is symmetric under the change of
variable v 7→ v∗, and antisymmetric under the change of variable v 7→ v′,v∗ 7→ v′∗.
Using this, from a quick calculation it follows that∫

R3
Q( f , f )(v)φ(v) dv

=
1
4

∫
R3

∫
R3

∫
S2
[ f ′ f ′∗− f f∗][φ +φ∗−φ

′−φ
′
∗]B(n, |v− v∗|) dndv∗dv.

(2.2)

In particular, this expression vanishes whenever φ is a function satisfying

φ +φ∗−φ
′−φ

′
∗ = 0

everywhere in momentum space. Such functions are called collision invariants.
As it turns out, the collection of all collision invariants is very easily understood:
every collision invariant takes the form

φ(v) = a+b · v+ c|v|2,

where a,c ∈ R and b ∈ R3 are constants. These are linear combinations of the
elementary collision invariants 1, v, and |v|2. The observables corresponding to
them are given special names:

M =
∫
R3

f (t,x,v) dv (mass),

P =
∫
R3

v f (t,x,v) dv (momentum),

E =
∫
R3
|v|2 f (t,x,v) dv (energy).

(2.3)

2.2 Boltzmann’s H-functional
Next, we take φ = log f . In this case

φ +φ∗−φ
′−φ

′
∗ = log( f f∗)− log( f ′ f ′∗).

From the elementary inequality

[ f ′ f ′∗− f f∗][log( f f∗)− log( f ′ f ′∗)]≤ 0,
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we conclude the Boltzmann inequality:∫
R3

Q( f , f ) log( f ) dv≤ 0.

The corresponding observable

H =
∫
R3

f log f dv

is called Boltzmann’s H-functional, or the entropy.

2.3 Maxwellian distributions
If equality holds in the Boltzmann inequality, then log f is a collision invariant,
i.e.

f (t,x,v) = exp(a+b · v+ c|v|2).
Such a distribution, with c < 0 (so that f is integrable) is called a Maxwellian
distribution. Conversely, if f is a Maxwellian distribution, then equality holds
in the Boltzmann inequality. Moreover, every Maxwellian distribution is a so-
lution to (1.10), because if f = exp(φ) where φ is a collision invariant, then
f ′ f ′∗− f f∗ = 0. Therefore Q( f , f ) = 0, and ∇x f = 0 since f is independent of
x. Therefore Maxwellian distributions characterize those solution to (1.10) for
which the Boltzmann inequality is an equality.

3 The spatially homogeneous equation
The full Boltzmann equation is a subject for which much remains to be studied,
and which we cannot hope to cover in the span of these notes alone. We therefore
restrict to a simpler but still highly nontrivial case, that in which f is constant in the
x variable: that is, f (t,x,v) = f (t,v). This describes a gas which is equidistributed
in space; then the goal is to understand the momentum distribution of the gas,
and its relation to physical quantities. Such a distribution is said to be spatially
homogeneous, and satisfies the spatially homogeneous Boltzmann equation

∂t f = Q( f , f ). (3.1)

With the transport term removed from the equation, the collision invariants of the
previous section become conserved quantities:

∂tM = 0, ∂tP = 0, ∂tE = 0. (3.2)
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Moreover, the Boltzmann inequality becomes an expression of the second law of
thermodynamics:

∂tH ≤ 0. (3.3)

This inequality is a special case of the Boltzmann H-theorem; the general H-
theorem is the analogous statement for the spatially inhomogeneous equation.
This last inequality marks an important difference between the classical descrip-
tion of the gas as a many-particle system of Newtonian particles and the Boltz-
mann description. One fundamental property of the classical description is that it
is time-reversible: given the positions and momenta of all particles at a given time,
one can (in principle) determine the dynamics not only forward in time, but also
backward (by reversing all momenta, and then running this new system forward
in time). In other words, time has no preferred direction: the equations of motion
are symmetric under time reversal.

In the Boltzmann description this is explicitly violated. Because the entropy
is nonincreasing in forward time, there is clearly a distinction between differ-
ent directions of time; the Boltzmann equation is time-irreversible. The apparent
discrepancy between time-reversible microscopic dynamics and time-irreversible
macroscopic dynamics is a subject of much interesting physical debate, but unfor-
tunately it is beyond the scope of these notes.

Maxwellian distributions f =Aexp(−β |v|2) are solutions to the homogeneous
equation with maximal entropy. A spatially homogeneous gas whose momentum
distribution is Maxwellian is called an ideal gas. Ideal gases are standard models
for the behavior of gases in the sciences. For an ideal gas, notions such as tem-
perature are well-defined, and appear in the constants defining the corresponding
Maxwellian distribution. That is, each Maxwellian distribution (with zero drift)
can be written in the form

f (v) =
( m

2πkT

) 3
2 exp

(
−m|v|2

2kT

)
,

where m is the mass of particles, k is a physical constant known as the Boltzmann
constant, and T is the thermodynamic temperature. (We are enforcing that f is a
probability density, so that it is normalized to have unit integral.)

4 Interesting problems on the Boltzmann equation
The Boltzmann equation has been a subject of intense study ever since it was
first formulated. However, much remains to be done for the mathematical theory
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of the equation. A major reason is that the collision integral Q( f , f ) is fairly
complicated. Another reason is that the Boltzmann equation, through the choice
of the collision kernel B, is quite general, and there is very little that can be said
that holds in general for all collision kernels. Therefore each collision kernel,
corresponding to different physical scenarios, must be studied essentially on its
own. In this section we will briefly discuss some of the mathematical problems
surrounding the Boltzmann equation, many of which remain open and active areas
of research.

4.1 Well-posedness
From a PDE perspective, the first question of interest is well-posedness: exis-
tence and uniqueness of solutions, and continuous dependence on initial data.
This is a famously difficult problem, even for the spatially homogeneous equa-
tion. One of the major difficulties is that, aside from the conservation laws and
the H-functional, there are no known generally valid globally controlled quanti-
ties for the evolution. Also, the equation itself is sometimes difficult to interpret:
for hard-sphere collisions things are generally fine, but for collision kernels B de-
scribing other particle interactions it can be hard to justify the finiteness of the
collision integral Q( f , f ). This is especially true with long-range forces, which
result in collision kernels that exhibit a singularity along certain collision angles.

Much of the progress on well-posedness is relatively recent. For the large part
it is limited to the spatially homogeneous case with a certain class of collision ker-
nels which behave similarly to hard-sphere collisions. There has been more suc-
cess for well-posedness of solutions which are perturbations of a Maxwellian dis-
tribution, for which one can linearize the collision integral around the Maxwellian.

4.2 Boundary conditions
We have derived and stated properties for the Boltzmann equation assuming that
the gas is distributed over all of R3; the only boundary conditions we imposed
were integrability. However, for physical applications it is also important to con-
sider gases in bounded domains. For the most part everything we have said so far
applies in bounded domains. The equations remain largely the same, the collision
invariants and H-functional have their usual properties, and Maxwellian distribu-
tions are still entropy-maximal solutions.

However, introducing the appropriate boundary conditions is a nontrivial task.
Beyond complicating the well-posedness problem, the most mathematically natu-
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ral boundary conditions are not necessarily the best suited to describing physical
scenarios. Mathematically, boundary conditions such as specular reflection (parti-
cles bounce off the walls at an angle equal to the pre-collision angle) and bounce-
back (particles bounce off the walls with reversed momenta) are convenient, but
they are not always good physical models. A good boundary condition takes into
account the fine details of the gas-surface interaction. A commonly studied ex-
ample of such a boundary condition is Maxwellian diffusion, in which particles
are absorbed and re-emitted by the boundary according to a probability distribu-
tion which maintains thermodynamic equilibrium between the particles and the
boundary.

4.3 Trend to equilibrium
The general conjecture for the long-time behavior of solutions to (1.10) in bounded
domains is that they should asymptotically approach a Maxwellian distribution.
That is, gases in bounded domains should eventually behave as ideal gases, a
conjecture suggested by the H-theorem. The problem of trend to equilibrium is
to prove this assertion, along with a quantitative description of the rate of con-
vergence. Progress on this problem was driven by the development of entropy
dissipation estimates, and nowadays has a mostly satisfactory answer when the
corresponding Cauchy problem has a good theory.

In unbounded domains, the conjecture for the long-time behavior of solu-
tions to the spatially inhomogeneous equation is different. This is because in
unbounded domains, the long-time effects of the transport operator become im-
portant. The idea is that the transport operator has a dispersive effect on the dis-
tribution: some particles may fail to undergo a large number of collisions, and
instead disperse out to infinity. For this situation the conjecture is that particles
are dispersed at infinity, and the problem is to find quantitative estimates on the
rate of dispersion. The research in this direction is driven by Strichartz estimates
for the transport operator, which bears similarities to the theory of the Schrödinger
equation.

4.4 Hydrodynamic limit
The Boltzmann equation is an equation intermediate between classical many-
particle mechanics and continuum mechanics. In particular, in some sense it
lies between the equations of motion for classical mechanics and the fundamental
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equations of fluid dynamics: the Navier-Stokes and Euler equations. The prob-
lem of the hydrodynamic limit is to demonstrate that the Navier-Stokes and Euler
equations arise as scaling limits of the Boltzmann equation, where the scaling
limit is along the passage from a dilute gas to a fluid. This can be done at the
level of purely formal manipulations, but to do so rigorously is an open problem.
This problem is of interest partly for its physical implications, but also because
understanding the passage between Boltzmann and fluid equations can be sources
of inspiration in terms of what theorems can be passed between them.

4.5 Variant equations
The Boltzmann equation as stated in (1.10) describes the dynamics of a dilute
monatomic gas, and the particle interactions are left fairly vague in the form of
the collision kernel B. Extensions and variants of the Boltzmann equation exist
and are used to describe more complicated physical situations. We describe two
of them here, though there are many more that are studied.

4.5.1 Mixtures and polyatomic gases

In a monatomic gas, one can assume that all particle interactions are identical. For
mixtures, one has to take into account that the interaction between two particles
depends on which type of particles are interacting. Equations for such systems can
be derived analogously to how we derived the Boltzmann equation for monatomic
gases. The main difference is that we now need N distribution functions fi, one
for each species in the gas, and we need to study the gain and loss terms for
each one. The gain and loss terms for fi split into gain and loss terms for fi
due to interactions with each species. Naturally, being a system with a more
complicated nonlinearity, the Boltzmann equations for mixtures are much less
well-studied analytically, though they are useful for modelling. One useful feature
of this approach is that one can model chemical reactions and radiative processes
happening inside the gas as well, by incorporating them into the gain and loss
terms.

4.5.2 Quantum Boltzmann equations

When one incorporates quantum effects into the particle interactions, very differ-
ent effects can appear.
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For instance, one might consider a gas of fermions. Fermions satisfy the Pauli
exclusion principle; in particular, they prefer to be in different quantum states
when possible. That is, particles find it easier to transfer from momentum state
v to state v′ if f (v′) is low, which results in an anti-clustering effect. The equa-
tion corresponding to a gas of fermions is called the Boltzmann-Fermi equation.
It is identical to the spatially homogeneous Boltzmann equation, except that the
collision integral gains a cubic term:

Q( f , f )(v)

=
∫
R3

∫
S2
[ f ′ f ′∗(1+ ε f )(1+ ε f∗)− f f∗(1+ ε f ′)(1+ ε f ′∗)]B(n, |v− v∗|)dndv∗

(4.1)
with ε < 0. Bosons do not satisfy the Pauli exclusion principle, and therefore
they tend to cluster in phase space. That is, particles find it easier to transfer from
momentum state v to state v′ if f (v′) is high. They satisfy the Boltzmann-Bose
equation, for which the collision integral is the same as (4.1) but with ε > 0. This
equation is particularly well-studied as one of several models of Bose-Einstein
condensation.

All of the same questions for Boltzmann equations can be asked for quan-
tum Boltzmann equations. They have collision invariants, an H-functional, and
equilibrium solutions; the questions of rigorous derivation, well-posedness, and
asymptotic behavior are of significant interest. This area has seen much very
recent progress, both on the mathematical side and on the level of physical exper-
iments, as it has become possible to do experiments with ultracold atoms.
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