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Abstract

Consider a basic scattering experiment: we shoot a beam of electrons to-
ward the origin, allow the electrons to be scatter off of an electric potential,
and catch the scattered electrons using particle detectors. Two basic ques-
tions arise: 1) If we know the potential beforehand, can we predict the angles
and energies of the scattered electrons? 2) If we only know the angles and
energies of the scattered electrons, can we recover the potential? In this talk
we aim to answer these questions, pose some related problems, and discuss
how more enterprising people than myself can use these to make cool things
(e.g. MRIs, cloaking devices, a salary).

0 Notation and the Fourier transform

We will use the Japanese bracket notation: (x) = /1 + |x|2. We write X <Y as
shorthand for X < CY, where C > 0 is a constant. We designate any dependent of
C on parameters like so: X S,p. Y for X <C(a,b,c,...)Y. We employ Landau
big-O and little-O asymptotic notation: f = O(g) as a — A if |f| < C|g| for a
constant C > 0 for a sufficiently close to A, and f = o(g) asa - A if (f/g) = 0
asa — A.

For f : R — C, its Fourier transform F f = ]?: R? — C is defined as

_ ey = e ™ £(x) dx.
FHO=1@) = g [ e e rw

The Fourier transform enjoys many useful properties. The most relevant for us
are:

1. F is a linear operator.



2. F has an inverse defined by
1
(2m)®

Flel) = — [ (&) de.

3. F and F~ ! intertwine differentiation and polynomial multiplication: J (0 J)IE) =
i Ff(E), F~(0g,8)(x) = —ix;Fg(x).

4. F and F~! intertwine pointwise products and convolution: F(fg) = Ff *
Fe. F\(fg)=F f«F g

5. F(e*f)(&) = F(f) (& — ).
Remark 0.1. We will only provide sketches of most proofs in these notes. A

gentle introduction to the material is [1, Sections IV.5]. Complete proofs of most
assertions can be found in [2, Chapters III - IV], upon which these notes are based.

1 The scattering problem for the linear Schrodinger
equation

The linear Schrodinger equation with time-independent potential

— iy —Ay+0(x)y =0, y=y(r,x), (,x) e R, x RY, (1.1)

is a well-known PDE that models the time evolution of a quantum wavefunction in
the presence of the potential Q. By scattering we mean that we consider solutions
to of the form y(¢,x) = e~ ik u(x), modelling a steady beam of electrons with
constant energy. (This is justified through the de Broglie relation “frequency ~
energy.”) Substituting this ansatz into the equation, we arrive at the Helmholtz
equation

(—k* — A+ Q(x))u = 0. (1.2)

When Q(x) = 0, this equation can be solved using the Fourier transform, yield-
ing plane wave solutions of the form u(x) = e*®*, where @ € R? with |o| = 1.
However, when Q(x) # 0, we (formally) have a correction term:

u(x) = e*% £ y(x, w,k).

The function u with this correction v(x, ®, k) is known as the distorted plane wave.
Our goal in these notes is to answer, at least for a potential Q with sufficiently rapid
decay, the following two questions:



1.

(Forward scattering problem): Given information about the potential Q,
what can we say about the distorted plane wave u?

2. (Inverse scattering problem): Given information about the distorted plane

wave u, what can we say about the potential Q?

Forward and inverse scattering problems can be formulated with other equations
of wave evolution. With different choices of PDE and different conditions im-
posed on the domain (see Section [5)) we can pose problems relevant to a wide
variety of applications. Examples:

1.

We have stated the simplest version of a scattering problem involving quan-
tum particles. Our understanding of more sophisticated scattering problems
can be considered to be one of the primary drivers of much of the advances
in physics over the past century.

. Medical imaging devices, at their core, operate by solving an inverse scat-

tering problem. For example, an MRI places a patient in a strong oscil-
lating magnetic field, which excites hydrogen atoms in the patient’s body,
resulting in an emission of electromagnetic signal which is measured by a
detector. The inverse scattering problem is to use the signal measurements
to reconstruct the image of the interior of the patient’s body.

Sonar and radar technology is a natural application of inverse scattering
problems: here the measurement of sound and electromagnetic waves can
be used to reconstruct physical objects that interact with them.

Geophysical surveying uses inverse scattering problems to detect valuable
resources (e.g. oil, water, minerals) deep underground.

. In materials science, inverse problems arise naturally in nondestructive test-

ing of properties of samples, for instance in electrical impedance tomog-
raphy (using surface measurements of voltage to measure the interior con-
ductivity of a material). This idea can be flipped on its head to produce
interesting metamaterials: for instance, so-called cloaking devices, which
are designed to interact with electromagnetic radiation in controlled ways
to produce adaptive gradations of refractive index, resulting in the illusion
of invisibility.



2 Solution of the Helmholtz equation

From here on we work in R for the sake of concreteness.

We first address the forward scattering problem, in which the potential Q is
known and the distorted plane wave v is to be determined. Inserting the distorted
plane wave solution u(x) = ¢*®* 4+ v(x, ®,k) into the Helmholtz equation (T.2),
we obtain an equation for v:

(—k> — A+ Q)v = —e* 2 Q(x). 2.1)
Formally this is an inhomogeneous Helmholtz equation for v:
(—k* — A+ Q)v = f(x). (2.2)

How do we solve such equations?

2.1 The Helmholtz equation with no potential

When Q(x) = 0, this equation can again be solved by the Fourier transform:

(—k2+[EP)DE) = f(E), (2.3)

and therefore formally

vx)=F! (Kﬁ%) (x)=F"" (mz%kz) * f (). (24)

There is an issue here, in that (|€|*> — k%)~! does not have a well-defined inverse
Fourier transform, even as a tempered distribution. However, we can regularize
the distribution to make sense of the transform. That is, since

-1 1 b ez
f'(KP—Miwﬂy”‘4ﬂﬂe

defines for all € > 0 a tempered distribution, we can take the distributional limit
as € — 0 to make sense of F~!(|&|2 —k%)~!; this is an instance of what is known
as a regularization of a distribution. We thus obtain

1 1 .
E.=lmF! _ ikl
=70 (mv—wiwv) 47|
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These are fundamental solutions of the Helmholtz equation, and a solution to (2.2)
can now be written in the form

eTiklx—y|
u(x) =ELf = : / f(y) dy. (2.5)

AmJrs |x—y
We call E f (resp. E_ f) the outgoing (resp. incoming) solution. One notices that
there is no uniqueness of the solution. In fact there are more ways to regularize the
distribution, for instance using a principal value integral, and consequently even
more fundamental solutions. Of course, as we have set our PDE on an unbounded
domain, this is not unexpected. Uniqueness can be recovered once we set bound-
ary conditions at infinity, i.e. a sufficiently strong decay condition. Some minimal

decay is required: indeed, E;(x) — E_(x) = ﬁsm‘(ﬂx') solves the homogeneous

equation, so there is no uniqueness in the class of functions decaying as O(|x|~!).

Definition 2.1. We say that v(x) satisfies the Sommerfeld conditions for outward
radiation in R if
d
v(x) = O(1/]x|) and a—v(x) —ikv(x) = o(1/]x|) as |x| — eo,
r
x 0

where r = |x| and a% =09
Remark 2.1. The Sommerfeld radiation conditions describe a wave that is radi-
ating energy away from the origin. One can show that the radiation conditions
imply that the energy flux through a large sphere centered at the origin over a
single period 27 /k? is positive. (See [1]].) This is considered necessary for phys-
ically valid solutions in scattering theory: energy should radiate from sources to
infinity, rather than from infinity to sources. The latter scenario is described by
the Sommerfeld conditions for inward radiation, obtained by replacing the — sign
in the outward radiation conditions with a + sign.

Theorem 2.1 (Asymptotic behavior of free solutions). Suppose f satisfies |f(x)| <
(x) 3% a > 0. Then Equation 2.2) has a unique solution u satisfying the radi-
ation conditions. It takes the form

eik|x7 |
() = () = E () = o / ) dy

Am JR3 [x =yl

1 elk\x\ a ,
Tan F(k8) +0(|x| -1+ as |x| — oo,

where 6 = ﬁ and o = min(5 — &, 1) for arbitrary € > 0.
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Sketch of proof. The function u = E f manifestly solves (2.2). The asymptotic

behavior is essentially a stationary phase argument. For |y| < % we may write

x =3 = x| = 8-y +O(y*/1x]).

Therefore on this region

2 2
oiklx—y elk|x|_lk9'y+0(bT) ezklxl—zke.y+0(ﬂ)

|
x x|

Ol T Wato®) M (140(1I/ ).

Performing the integral over |y| < |—§| yields the dominant term, with an error. One
can show the appropriate decay of this error term, as well as the error coming from
the integration over |y| > %

Next, we must verify the radiation conditions. This is done by taking the
radial derivative inside the integral. This hits the kernel £ in the numerator and
denominator through the product rule; we then again perform a careful analysis
of the integrals in the regions |y| < % and |y| > lizl

Lastly, we verify uniqueness. Suppose v is another solution, and let xy be a
point, Bg a ball at the origin with R > |xo|. Integrating v(A +k?)u — u(A+ k*)v
over Bg \ B¢(xp) using Green’s theorem, and taking € — 0, yields an expression
for —v(xp) which is shown to be o(1) as R — oo. O

2.2 The Helmholtz equation with potential
We return to Equation (2.2)), the Helmholtz equation with potential:
(=K —A+Q)v = f(x).

To solve this equation, we make the following ansatz: suppose v = E g for some
g. Formally substituting into the equation and using the fact that (—k> —A)E g =
g, we find that g solves the integral equation

g+QE g=(id+T)g= f(x), (2.6)

where Tg = QF g. We must then ask the question of existence and uniqueness of
solutions to this equation. To do this we first introduce some norms and associated
function spaces. For a function f define the weighted L*-norm

1 llr = 11607 (o)l
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and the weighted Sobolev norm

1fllse = Y 1)V £z

j|<s

Definition 2.2. We say that v is an outgoing solution of (2.2) if v solves (2.2) and
is of the form v = E_ g for some g € L=3% ¢ > 0.

Theorem 2.2 (Existence and uniqueness of outgoing solutions). Let Q € L=3+¢,
Then for any f € L™3%%, there exists a unique outgoing solution v € L.

Sketch of proof. We will show that T is a compact operator on L=>7%  Then id +
T 1s a compact perturbation of the identity, and the Fredholm alternative holds:
the inhomogeneous equation (id+ 7)g = f is uniquely solvable in L% if and
only if the homogenous equation (id + 7')h = 0 has trivial kernel.
From Theorem 2.1} we find that
WIErgl < llglln < llgll=s+e

and
() |hE+g| S llgllpe3ta-

Moreover, E . g and d,E g are continuous functions. Define

Tng = Q(x)Nn(x)E g,

where Ny 1s a smooth spatial cutoff at scale N. Then our estimates combined with
Arzela-Ascoli show that Ty is a compact operator on L*3T%  Moreover we have

AT —Tiv)gl < ()77 ) >4 (1 =) (%) | E¢]
< (1=mw) (1) ()~ (x)|Eg]
< N) Mgl

Therefore ||T — Ty||;=3+a — 0 as N — oo, which proves that 7 is an operator norm
limit of compact operators, and hence a compact operator.
Lastly, we can prove the following result:

Theorem 2.3. Let Q € L€ be real-valued. Suppose 0 < & < Landhe HO2te
solves the homogeneous equation

h+Q(x)E;+h=0.
Then h = 0.



This verifies the Fredholm alternative hypothesis, and hence our desired con-
clusion follows. As the proof is rather long, we take this result on faith. We do,
however, mention the estimate that is at the heart of its proof:

Theorem 2.4 (Agmon’s estimates). For any € > 0,

IE<A][ il odrer $=0,1,2

ENS 1+g?

where the implicit constant is independent of k for k > &y > O. [

3 Solution of the forward scattering problem

With Theorem [2.2)in hand, we return to the problem of solving

(—k? — A+ Q)v = —e**Q(x). (3.1)

For any given Q € L% % and fixed k € R, @ € S, we can find the unique outgoing
solution of this equation v, namely v = E g where g is the unique solution of the
integral equation

(id+ Q) E+)g = —Q(x)e ™.
Now letting k € R and @ € S? vary, we obtain a function v = v(x,k®, k) solving
(3.1). Since v is of the form E g, Theorem tells us that v has the following
asymptotic behavior as |x| — oo:
1 elk|x|

v(x,ka),k):4n_ ™

g(k6,kw) +O(|x] -,
where
3(k0, ko) = / (e km)e 0 d
R
In conclusion, we have shown the following:

Theorem 3.1 (Existence and asymptotics for the distorted plane wave). Assume
Q € L=31% For any w € S?, the distorted plane wave

u(x, 0,k) = e*** +v(x, kw, k)
exists and has the following form as |x| — eo:

ik|x|

[

u(x,0,k) = X% + 5 q(0, 0, k) + O(|jx| "1+,



Definition 3.1. The function a(6, ®,k) is called the scattering amplitude.

This completely solves the scattering problem: if we know the potential Q,
then we can construct the distorted plane wave, and we can describe it completely
as |x| — oo via the scattering amplitude.

4 Solution of the inverse scattering problem

Lastly, we handle the inverse scattering problem: the reconstruction of the poten-
tial Q(x), given information about the scattering amplitude a(0, ®,k).

Remark 4.1. This problem is overdetermined: a dependson (3—1)+(3—1)+1=
5 parameters, while O depends on just 3 parameters.

Theorem 4.1 (Recovery of potential from scattering amplitude). Suppose we know
Q € L=3%% and we know the scattering amplitude a(0,®,k) for all (6, m,k) €
S2 x S? x R. Then the value of Q(x) can be determined for all x € R3.

Proof. Substituting v = E g into Equation 3.1} we consider once again its integral
form:

g+Q(x)E g = (id+T)g=—e""Q(x).

The idea is to take the Fourier tranform of this equation, obtaining:
g(&. ko) + FIQE g = —0(§ —ka), (4.1)

and use the fact that (6, ®,k) = (47)'g(k6,kw) to obtain information about Q.

We pose the equation for g € HO%2+% Note that if g € H*2%%, then by Ag-
mon’s estimates (Theorem we have E g € H%~2~% and hence O(x)E g €
HO3=2 ¢ H%3+% Then again by Agmon’s estimates, we have

-1
I8l o0y =IQE-&] oy Sl 010

for all k£ > 1, with the implicit constant independent of k. Therefore the operator
T:H%2+% 5 H2+% has norm |IT|| < 1 for large k. So we conclude that id+ 7 is
invertible for k large, with inverse given by the Neumann series

1 > -
(id+7)'=——==Y (-1)/1.
d+T =



Since

I8l 0y ea < NGd+T)TIQW)E ] 3.0 =IGd+T) T IQW

H 2+a7

we conclude that Hg||H0~ 1 18 bounded as k — co uniformly in @.

Now we return to Equation We estimate using Cauchy-Schwarz and Ag-
mon:

F(QE:8)| < [ 10WIIE:gldr S [ ()7 ] d
— 1
< 1) aqey 00 E e
SUE sl -y S gl g = OL/K),

Therefore R
0(8 —kw) = —g(§,kw) +O(1/k).
For a given @ € S2, let 1 € R3 be orthogonal to @. Set

kw—i—n
kOy.
k= |ka)—|—n| & = kb
Note that
ko +1|~ = (K +n)"2 =k (1+0(n2/K)).
Therefore

& —ko = (1+0(n*/k*)) (ko> +1) — ko — n

as k — oo, and hence
O(& —kw) — Q(n) as k — oo,

Thus we can recover Q(n), where 7 is any vector orthogonal to any ® € S2.
Hence Q(n) can be recovered for arbitrary 7, and thus we recover Q(x). O

5 Extensions and conclusion

1. The methods we have described are rather general and work for a larger
class of potentials and in all dimensions > 2; we have chosen d = 3 and
Q € L3 purely to simplify some exposition. It is possible to recover
similar conclusions for potentials with weaker decay, such as Q € L>1+%,
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The “holy grail,” so to speak, for these methods would be the Coulomb
potential Q(x) = |x|~!; sadly some extra work needs to be done to get to this
decay class of potentials. One trick that physicists employ is to approximate
the Coulomb potential with the Yukawa potential Q(x) = %yr‘, to which our

methods can be applied.

. We should note that physicists would probably balk at our solution of the
forward problem. There are other ways to solve the forward scattering prob-
lem: key words here are partial wave analysis and Born approximation.

. We have remarked earlier that the inverse scattering problem is overdeter-
mined in dimension 3, and in general for dimensions d > 2; again the scat-
tering amplitude is determined by (d — 1)+ (d — 1) + 1 = 2d — 1 parameters,
while the potential is determined by d parameters. Thus one might believe
that it is possible to recover the potential with less information on the scat-
tering amplitude. This turns out to be correct: for example, one can prove
inverse scattering results at fixed energy (a(0, @, k) known for a single value
of k), or study backscattering problems (a(8,—6,k) known).

. A related problem one can consider is the inverse boundary value problem.
Here we consider the Dirichlet problem
(k> = A+Q(x))u=0 xcQ, 5.0)
u(x) = h(x) x€0Q, '

where Q is a bounded domain in R? with C* boundary. If for k fixed this
boundary value problem enjoys existence and uniqueness of solutions, then
one can form the Dirichlet-to-Neumann operator

u

Ah = —
an 897

where u is the solution to with data 4. The inverse boundary value
problem consists of recovering the potential Q from information on the oper-
ator A. One way in which this type of problem appears (albeit with a differ-
ent PDE) is in electrical impedance tomography: one can imagine that Q is
a region through which current flows, and which has varying electrical con-
ductivity y(x). Then the voltage u satisfies the equation Vy(x) - Vu(x) =0
on Q. The Dirichlet-to-Neumann operator allows us to measure the flux
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of the current on dQ if we set the voltage on dQ to be given by h. Then
the inverse boundary value problem is to determine the conductivity using
the measurements described by the Dirichlet-to-Neumann operator. Inter-
estingly, one can show that inverse boundary value problems and inverse
scattering problems are in some cases equivalent.

5. Another related problem is that of scattering by obstacles. In this case
we again study the behavior of plane wave solutions to the time-dependent
Schrodinger equation satisfying outward radiation conditions, but this time
on RY\ Q and with zero potential and satisfying either Dirichlet or Neu-
mann boundary conditions on dQ. The inverse obstacle problem is then to
determine  from the scattering amplitude.
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