A transference principle 1n fractional calculus
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In this short note we are concerned with the following statements regarding
fractional calculus on the torus T¢ = (R/27xZ):

Proposition 1 (fractional product rule). Letd > 1, s >0, 1 < p < oo, and 1 <
1_ 1,1 _ 1,1
DP2,q2 < oo such that R R TR Then
VI ray S NIVEF i ray gl oz eray + 11V 8l 2o (ray 1/ Wl o2 ey -

Proposition 2 (nonlinear Bernstein). Let G : C — C be Holder continuous of
order a € (0,1]. Letd > 1and 1 < p < oo. Then for u : T4 — C smooth and
periodic, we have
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forall N > 1.

Proposition 3 (fractional chain rule). Suppose F : C — C satisfies |F (u) —F (v)| <
lu—v|(G(u) + G(v)) for some G:C — [0,00). Letd > 1,0<s<1, 1 < p <o,
1
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and 1 < py < oo, such thatp = +p2. Then
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Propositions [[|and 3] are well-known. They were first proved in the Euclidean
setting (replacing T¢ by R?) by Christ and Weinstein [[1]. A textbook treatment
of these results can be found in Chapter 2 of [3]. A proof of Proposition [2| in
Euclidean space can be found, for instance, in [2].

While it is generally accepted that the above statements are true on T¢, a rigor-
ous proof of this assertion can be difficult to locate in the literature. It is common
that the Euclidean version of the statement is cited via [1]], and then the periodic
version is justified by appealing to a transference principle without further elabo-
ration. It is the purpose of this note to make the transference principle rigorous, at

least in the context of Propositions and
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We first note that Proposition |1} has identical proofs in the Euclidean and pe-
riodic settings. If one examines the proof in the Euclidean setting, it only uses
basic facts about maximal functions, the Littlewood-Paley square-function esti-
mate, and the Fefferman-Stein vector-valued maximal inequality. All of these
results remain valid in the periodic setting.

Propositions |2 and [3| require a little more work. For the Euclidean case, the
proof (at least, the proof that the author is familiar with) uses some facts specific
to Euclidean Littlewood-Paley theory. In particular, the Euclidean Littlewood-
Paley convolution kernels are Schwartz functions, and have a dilation structure
vy (x) = N9y (Nx), with associated estimates.

For Littlewood-Paley theory on the torus, neither property makes sense: there
is no sensible notion of a Schwartz function on the torus, and there is no dilation
structure because the torus is not dilation-invariant. However, there is an esti-
mate on the periodic Littlewood-Paley convolution kernels that effectively does
the same job. We will state and prove this estimate, and use this to prove Proposi-
tion [2 to illustrate its usage.

Lemma 4. Let d > 1. Let m = (my,...,my) and B = (Pi1,...,Bs) be multi-
indices of non-negative integers. Let Yy denote the Fourier multiplier deﬁning
the Littlewood-Paley projection Py. Then fory = (yi,...,v4) € T¢ = [0,27)¢,
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where |B| = Z‘ffﬁj, DB = 8yﬁll 8yg",

- t 0<r<m,
2n—t w<t<2m.

Lemma 4| states that yy, behaves like a dilation to scale ]%] of a function that
obeys Schwartz-type decay, so long as we stay away from 0 and 27. Of course, at
0 and 27 there can be no Schwartz-type decay, as here there is no cancellation in
the complex exponentials.

Proof. Firsttaked = 1. For N > 1, we write
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and thus
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where Wg (1) = By (r). Summing by parts,
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Similarly, if we sum by parts m times, we end up with the estimate
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Now we seek to strike a balance between the estimate
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which is singular at 0 and 27, and the trivial estimate
b
i < NIHB.

We break into cases:

I.0<y< jl\,: In this range, by the trivial estimate and 1 ~ 1 + Ny we obtain
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<y < Z: In this range, |1 —e?| ~ |siny| ~y, and Ny > 1+ Ny, so
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3. Z <y < 3Z: In this range, N|1 —e”| ~ N ~ (1+Ny), so
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4. 37ﬂ <y<2m-— zlv: In this range |1 —e”| ~ |sin(27 —y)| ~ 27—y, and we argue
as in 2.

5. 27r—1lv <y<2m: We argue as in 1.

Thus the claim is proved for d = 1. The case of higher dimensions is similar:
write
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where Wg(t1,...,tq) = t{} ! tg" v (ty,-..,t;7). Applying the summation by parts
argument successively in each variable produces
d 1—m;
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where the implicit constant is essentially || D"Wgl| [=(rd- From here we estimate
each factor as in the one-dimensional case, and the claim follows. L]

The virtue of Lemma []is that it can be used in the periodic setting to replace
arguments in Euclidean Littlewood-Paley theory that invoke the dilation structure.
As an example, we apply it to the proof of Proposition 2]

Proof of Proposition[2] Let us take p < oo; the changes required for p = oo will be
obvious. First take d = 1. We observe that for N > 1, 1//% 1S a mean-zero function



on T. Therefore we have the pointwise estimate
[PyG(u)(x)] = [y = G(u)) (x)]
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where we have used the periodicity and Holder continuity of u. Taking the L?/
norm and applying Minkowski’s inequality, we obtain

NG () gy S 1Vl [ 110 ) ) dy
9l r) [ 2= (5 ()
It now suffices to prove
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Up to now the proof is essentially identical to the Euclidean case; at this point in

the Euclidean setting one expresses Wy as a dilate of y; and uses the Schwartz
decay. Instead we apply Lemma 4] and change variables, obtaining:
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so long as we choose m > 14 . The other integral is estimated similarly. This
establishes the claim for d = 1. For d > 2, the argument is similar. The only
change is that instead of T = [0,7) U [x,27), we perform a binary decomposi-
tion of T¢ into 2¢ equal-sized cubes; e.g. T? is the union of [0,7)?, [0,7) x
[7,27), [x,27) x [0,7), and [r,27)?. We break up the convolution integral cor-
respondingly, and use Lemma 4] to estimate each piece. The details are left to the
reader. [

A similar application of Lemma 4| can be used to transfer the proof of Propo-
sition 3| from the Euclidean setting to the periodic setting; the details are left to the
reader.
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