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In this short note we are concerned with the following statements regarding
fractional calculus on the torus Td = (R/2πZ)d:

Proposition 1 (fractional product rule). Let d ≥ 1, s > 0, 1 < p < ∞, and 1 <
p2,q2 ≤ ∞ such that 1

p = 1
p1
+ 1

p2
= 1

q1
+ 1

q2
. Then

‖|∇|s( f g)‖Lp(Td) . ‖|∇|
s f‖Lp1(Td)‖g‖Lp2(Td)+‖|∇|

sg‖Lq1(Td)‖ f‖Lq2(Td).

Proposition 2 (nonlinear Bernstein). Let G : C → C be Hölder continuous of
order α ∈ (0,1]. Let d ≥ 1 and 1 ≤ p ≤ ∞. Then for u : Td → C smooth and
periodic, we have

‖PNG(u)‖Lp/α (Td) . N−α‖∇u‖α

Lp(Td)

for all N > 1.

Proposition 3 (fractional chain rule). Suppose F :C→C satisfies |F(u)−F(v)|.
|u− v|(G(u)+G(v)) for some G : C→ [0,∞). Let d ≥ 1, 0 < s < 1, 1 < p < ∞,
and 1 < p2 ≤ ∞, such that 1

p = 1
p1
+ 1

p2
. Then

‖|∇|sF(u)‖Lp(Td) . ‖|∇|
su‖Lp1(Td)‖G(u)‖Lp2(Td).

Propositions 1 and 3 are well-known. They were first proved in the Euclidean
setting (replacing Td by Rd) by Christ and Weinstein [1]. A textbook treatment
of these results can be found in Chapter 2 of [3]. A proof of Proposition 2 in
Euclidean space can be found, for instance, in [2].

While it is generally accepted that the above statements are true on Td , a rigor-
ous proof of this assertion can be difficult to locate in the literature. It is common
that the Euclidean version of the statement is cited via [1], and then the periodic
version is justified by appealing to a transference principle without further elabo-
ration. It is the purpose of this note to make the transference principle rigorous, at
least in the context of Propositions 1, 2, and 3.
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We first note that Proposition 1 has identical proofs in the Euclidean and pe-
riodic settings. If one examines the proof in the Euclidean setting, it only uses
basic facts about maximal functions, the Littlewood-Paley square-function esti-
mate, and the Fefferman-Stein vector-valued maximal inequality. All of these
results remain valid in the periodic setting.

Propositions 2 and 3 require a little more work. For the Euclidean case, the
proof (at least, the proof that the author is familiar with) uses some facts specific
to Euclidean Littlewood-Paley theory. In particular, the Euclidean Littlewood-
Paley convolution kernels are Schwartz functions, and have a dilation structure
ψ∨N (x) = Ndψ∨(Nx), with associated estimates.

For Littlewood-Paley theory on the torus, neither property makes sense: there
is no sensible notion of a Schwartz function on the torus, and there is no dilation
structure because the torus is not dilation-invariant. However, there is an esti-
mate on the periodic Littlewood-Paley convolution kernels that effectively does
the same job. We will state and prove this estimate, and use this to prove Proposi-
tion 2 to illustrate its usage.

Lemma 4. Let d ≥ 1. Let m = (m1, . . . ,md) and β = (β1, . . . ,βd) be multi-
indices of non-negative integers. Let ψN denote the Fourier multiplier defining
the Littlewood-Paley projection PN . Then for y = (y1, . . . ,yd) ∈ Td = [0,2π)d ,

|Dβ (ψN)
∨(y)|.m,β Nd+|β |

d

∏
j=1

1
(1+Nỹ j)

m j ,

where |β |= ∑
d
1 β j, Dβ = ∂

β1
y1 · · ·∂

βd
yd , and

t̃ =

{
t 0≤ t ≤ π,

2π− t π ≤ t < 2π.

Lemma 4 states that ψ∨N behaves like a dilation to scale 1
N of a function that

obeys Schwartz-type decay, so long as we stay away from 0 and 2π . Of course, at
0 and 2π there can be no Schwartz-type decay, as here there is no cancellation in
the complex exponentials.

Proof. First take d = 1. For N ≥ 1, we write

ψ
∨
N (y) =

∞

∑
n=−∞

ψN(n)einy =
∞

∑
n=−∞

ψ1(
n
N
)einy,
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and thus

dβ

dyβ
ψ
∨
N (y) =

∞

∑
n=−∞

(in)β
ψ1(

n
N
)einy = (iN)β

∞

∑
n=−∞

(
n
N

)β

ψ1(
n
N
)einy

= (iN)β
∞

∑
n=−∞

Ψβ (
n
N
)einy,

where Ψβ (t) = tβ ψ1(t). Summing by parts,∣∣∣∣ ∞

∑
n=−∞

Ψβ (
n
N
)einy

∣∣∣∣= 1
|1− eiy|

∣∣∣∣ ∑
|n|∼N

einy[Ψβ (
n
N
)−Ψβ (

n−1
N

)]

∣∣∣∣
. ‖ d

dx
Ψβ‖L∞(R)

N−1

|1− eiy| ∑
|n|∼N

1

∼ ‖ d
dx

Ψβ‖L∞(R)
N1−1

|1− eiy|
.

Similarly, if we sum by parts m times, we end up with the estimate∣∣∣∣ ∞

∑
n=−∞

Ψβ (
n
N
)einy

∣∣∣∣. ‖ dm

dxm Ψβ‖L∞(R)
N1−m

|1− eiy|m
∼m,β

N1−m

|1− eiy|m
.

Now we seek to strike a balance between the estimate∣∣∣∣ dβ

dyβ
ψ
∨
N (y)

∣∣∣∣.m,β
N1+β−m

|1− eiy|m
,

which is singular at 0 and 2π , and the trivial estimate∣∣∣∣ dβ

dyβ
ψ
∨
N (y)

∣∣∣∣. N1+β .

We break into cases:

1. 0≤ y < 1
N : In this range, by the trivial estimate and 1∼ 1+Ny we obtain∣∣∣∣ dβ

dyβ
ψ
∨
N (y)

∣∣∣∣. N1+β ∼ N1+β

(1+Ny)m .
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2. 1
N ≤ y < π

2 : In this range, |1− eiy| ∼ |siny| ∼ y, and Ny & 1+Ny, so∣∣∣∣ dβ

dyβ
ψ
∨
N (y)

∣∣∣∣. N1+β

(Ny)m .
N1+β

(1+Ny)m .

3. π

2 ≤ y < 3π

2 : In this range, N|1− eiy| ∼ N ∼ (1+Ny), so∣∣∣∣ dβ

dyβ
ψ
∨
N (y)

∣∣∣∣. N1+β

Nm|1− eiy|m
∼ N1+β

(1+Ny)m .

4. 3π

2 ≤ y < 2π− 1
N : In this range |1−eiy| ∼ |sin(2π−y)| ∼ 2π−y, and we argue

as in 2.

5. 2π− 1
N ≤ y < 2π: We argue as in 1.

Thus the claim is proved for d = 1. The case of higher dimensions is similar:
write

Dβ
ψ
∨
N (y) = (iN)|β |∑

ξd

e(ξdyd) · · ·∑
ξ1

e(ξ1y1)Ψβ (
ξ

N
),

where Ψβ (t1, . . . , td) = tβ1
1 · · · t

βd
d ψ1(t1, . . . , td). Applying the summation by parts

argument successively in each variable produces

|Dβ
ψ
∨
N (y)|.β ,m N|β |

d

∏
j=1

N1−m j

|1− e(y j)|m j
,

where the implicit constant is essentially ‖DmΨβ‖L∞(Rd . From here we estimate
each factor as in the one-dimensional case, and the claim follows.

The virtue of Lemma 4 is that it can be used in the periodic setting to replace
arguments in Euclidean Littlewood-Paley theory that invoke the dilation structure.
As an example, we apply it to the proof of Proposition 2.

Proof of Proposition 2. Let us take p < ∞; the changes required for p = ∞ will be
obvious. First take d = 1. We observe that for N > 1, ψ∨N is a mean-zero function

4



on T. Therefore we have the pointwise estimate

|PNG(u)(x)|= |(ψ∨N ∗G(u))(x)|

=

∣∣∣∣∫Tψ
∨
N (y)[G(u(x− y))−G(u(x))] dy

∣∣∣∣
≤
∣∣∣∣∫Tψ

∨
N (y)1[0,π)(y)[G(u(x− y))−G(u(x))] dy

∣∣∣∣
+

∣∣∣∣∫Tψ
∨
N (y)1[π,2π)(y)[G(u(x− y))−G(u(x−2π))] dy

∣∣∣∣
≤
∫
T
|ψ∨N (y)1[0,π)

(∫ 1

0
|y||∇u(x−θy)| dθ

)α

dy

+
∫
T
|ψ∨N (y)1[π,2π)(y)

(∫ 1

0
|2π− y||∇u(x−2π +θ(2π− y))| dθ

)α

dy,

where we have used the periodicity and Hölder continuity of u. Taking the Lp/α

norm and applying Minkowski’s inequality, we obtain

‖PNG(u)‖
Lp/α

x (Td)
. ‖∇u‖α

Lp(T)

∫
T
|y|α1[0,π)(y)|ψN(y)| dy

+‖∇u‖α

Lp(T)

∫
T
|2π− y|α1[π,2π)(y)|ψN(y)| dy.

It now suffices to prove∫
T
|y|α1[0,π)(y)|ψN(y)| dy+

∫
T
|2π− y|α1[π,2π)(y)|ψN(y)| dy . N−α .

Up to now the proof is essentially identical to the Euclidean case; at this point in
the Euclidean setting one expresses ψN as a dilate of ψ1 and uses the Schwartz
decay. Instead we apply Lemma 4 and change variables, obtaining:∫

T
|y|α1[0,π)(y)|ψN(y)| dy .m

∫
T
|y|α N

(1+Ny)m dy

= N−α

∫
NT

|x|α

(1+ x)m dy

≤ N−α

∫
R

|x|α

(1+ |x|)m dy

. N−α ,
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so long as we choose m > 1+α . The other integral is estimated similarly. This
establishes the claim for d = 1. For d ≥ 2, the argument is similar. The only
change is that instead of T = [0,π)∪ [π,2π), we perform a binary decomposi-
tion of Td into 2d equal-sized cubes; e.g. T2 is the union of [0,π)2, [0,π)×
[π,2π), [π,2π)× [0,π), and [π,2π)2. We break up the convolution integral cor-
respondingly, and use Lemma 4 to estimate each piece. The details are left to the
reader.

A similar application of Lemma 4 can be used to transfer the proof of Propo-
sition 3 from the Euclidean setting to the periodic setting; the details are left to the
reader.
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