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Abstract. The Coulomb force law of classical electromagnetism says that the
electrostatic force on an electron at distance r from a positively charged atomic
nucleus is attractive and has magnitude ∼ r−2. This results in a very large force
of attraction for small values of r. This begs the question: what stops the electron
from irreversibly crashing into the nucleus? In this talk, we will discuss the history
of this problem and how it prompted the development of quantum mechanics in
the early 20th century. We will provide an elementary proof of the stability of the
hydrogen atom, and highlight the role that uncertainty principles play in problems
of this class. The talk will be entirely self-contained; any relevant physics will be
presented at the start.

1 The classical model of the atom and the stability
problem

By the early 20th century, physicists had begun to experimentally uncover the
structure of the smallest known constituents of matter, the atom. The following
picture began to emerge: the atom consists of a relatively massive core of positive
electric charge called the nucleus, and negatively charged particle of relatively
small mass moving in the space around the nucleus called the electron.

Consider an atomic configuration consisting of a nucleus with charge +Ze sitting
at rest at the origin and a single electron of charge −e at position r ∈R3, r = ‖r‖.
The classical Coulomb force law tells us that the force on the electron due to the
the electrostatic interaction between the electron and the nucleus is given by

F =−Ze2 r
r3 ,

with appropriately chosen units. Solving for the position r of the electron as a
function of time, we can show that much like in the case of Newtonian gravitation
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(another inverse-square force law), the bounded trajectories of the electron take
one of two forms: Kepler-esque ellipses with the nucleus as one of the foci, or
degenerate trajectories that crash into the nucleus.

This model of the atom as a solar-system-esque configuration (i.e. the Rutherford
model) turns out to have a major deficiency: it contradicts the observation that
most atoms appear to have a consistent radius on the order of 10−8 cm. Because
the atomic nucleus is much smaller compared to this radius (around 10−13 cm),
this means that the vast majority of the volume of the atom is empty and defined
by the electron orbital trajectories, which must mean that the electron spends a
significant portion of its time at a distance of about 10−8 cm from the nucleus.

However, no classical explanation exists as to what mechanism forces the electron
to stay away from the nucleus in this manner. It appears that there is no obstruction
to the trajectory of the electron being an arbitrarily small ellipse; nor does there
appear to be something preventing a degenerate trajectory, which would result in
the electron being irreversibly stuck to the nucleus by an attractive force of infinite
order. In fact, from purely a classical physics perspective, it appears that an atom
with bound electrons should be allowed to have arbitrarily small radius down to
the radius of the nucleus, in disagreement with experiment.

This discrepancy is the essence of the problem called stability of the atom, which
asks: What mechanism prevents an atomic electron-nucleus configuration from
collapsing to a point?

2 The energy reformulation of stability
Let us examine the stability problem from a deeper perspective and with the aid
of some physical concepts. First let us give a name to the single-electron nucleus
configuration.

Definition. A hydrogenic atom is an atom consisting of a nucleus with positive
charge +Ze and a single bound electron of negative charge −e.

The hydrogen atom is described by the case Z = 1. The Coulomb force in a
hydrogenic atom configuration is a conservative vector field, given by e times as
the negative gradient of the Coulomb potential generated by the nucleus,

VC(r) =−
Ze
r
.
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The potential energy of the hydrogenic atom is the quantity

U(r) = eVC(r) =−
Ze2

r
.

We may also define the momentum of the electron as the vector p = meṙ, where
me is the mass of the electron, and the kinetic energy by

T (p) =
1

2me
‖p‖2.

Then the total energy of the system is described by the Hamiltonian

H(r,p) = T (p)+U(r) =
1

2me
‖p‖2− Ze2

r
.

If the energy (that is, H) is bounded from below by a finite (necessarily negative)
constant, then small values of r must be accompanied by a corresponding suffi-
ciently large value of ‖p‖. This suggests that if energy is bounded below, then the
electron cannot spend too much time too close to the nucleus: its higher momen-
tum will instead tend to propel it away, which would help to explain the value of
the atomic radius. Therefore we may recast the stability problem for hydrogenic
atoms in the following way: Is there a lower bound for the energy H(r,p), and
what mechanism provides the lower bound?

However, classical physics fails us once again. A closer analysis of the possible
bounded trajectories does not rule out trajectories with arbitrarily small momen-
tum and radius. (Consider, in particular, degenerate trajectories.) Consequently,
classical physics is incapable of providing a lower bound to the energy. This is,
in fact, one of the major defects in the planetary model of the atom. Consider
an atomic gas and fix a distinguished atom. If no lower bound to the energy of
the atomic configuration exists, then one could imagine a case where this distin-
guished atom repeatedly loses energy to inter-atomic collisions, until its energy is
extremely negative; this would then force the electron to be bound to an extremely
tight orbit around the nucleus. Moreover, there is in fact a much more serious
problem: even without inter-atomic interactions, an accelerating point charge ra-
diates energy in the form of electromagnetic waves (with the change in energy
described quantitatively by the Larmor formula). An electron orbiting around a
nucleus is by definition in acceleration, and therefore spontaneously radiates away
energy, and so there are actually no possible stable electron-nucleus orbits accord-
ing to classical physics.
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The physicists of the early 20th century, working just before the dawn of the quan-
tum revolution, were also familiar with this defect with the planetary model. The
defect was so severe that it prompted physicists to completely rethink their under-
standing of atomic physics. In fact, the stability problem was one of the major
factors that led Niels Bohr to develop the Bohr hydrogen model, a model of the
hydrogen atom that allows electrons to orbit only in certain pre-specified trajec-
tories corresponding to different discrete energies and explicitly encodes a lowest
energy level. Bohr’s hydrogen model then went on to be refined into the first truly
quantum mechanical models of the atom, by Werner Heisenberg (matrix mechan-
ics) and independently by Erwin Schrödinger (Schrödinger equation). Today, we
understand the stability of the atom to be a phenomenon that is truly quantum-
mechanical in nature.

3 Crash course in quantum mechanics
To laymen quantum mechanics sounds like a highly technical and scary subject.
This is true. However, its mathematical foundations are actually quite simple, and
we can treat much of nonrelativistic quantum mechanics in an axiomatic setting.

We consider again the situation of the hydrogenic atom. We choose natural units
so that e = 1. We will not need the strength of all of the axioms of nonrela-
tivistic quantum mechanics. Here we use the Schrödinger formulation, through
Schrödinger’s equation will not be necessary. All relevant integrals will be as-
sumed to exist (and, if necessary, be finite). Here are the axioms/facts/definitions
relevant to us:

1. We denote by L2(R3) the space of complex-valued Lebesgue measurable
functions on R3 that are square-integrable, i.e.

‖ f‖2
2 =

ˆ
R3
| f |2 dx < ∞.

L2(R3) is a Hilbert space with inner product

〈 f ,g〉=
ˆ
R3

f g dx.

One can equivalently define L2(R3) as the completion of the space of com-
pactly supported smooth functions under the L2-norm.
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2. Contrary to classical physics, the electron no longer has a well-defined po-
sition and momentum. The state of the electron, which encodes all the
information about the electron, is an element ψ ∈ L2(R3) with unit norm,
i.e. ‖ψ‖2 = 1.

3. Born statistical interpretation: |ψ|2 = ρ is the probability density function
of the position of the electron:ˆ

E
|ψ|2 = P(the electron’s position is in E).

4. The kinetic energy of the state ψ is given by

Tψ =

ˆ
R3
|∇ψ(x)|2 dx.

The potential energy of the state ψ is given by

Uψ =

ˆ
R3
|ψ(x)|2VC(x) dx =−Z

ˆ
R3

|ψ(x)|2

|x|
dx,

where VC(x) =−Ze2|x|−1 is the Coulomb potential.

5. The total energy of the state ψ is given by

Eψ = Tψ +Uψ =

ˆ
R3
|∇ψ(x)|2 dx−Z

ˆ
R3

|ψ(x)|2

|x|
dx.

Equivalently we can express the total energy by the inner product

Eψ = 〈ψ,Hψ〉

where H is the Hamiltonian operator

H =−∆+VC(x) =−∆− Z
|x|

.

6. The ground state energy is the real number

E0 = inf
‖ψ‖2=1

Eψ .

If the infimum is achieved by some state ψ0, we say that ψ0 is a ground
state of the Coulomb potential.
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4 Stability and uncertainty
We now reformulate the problem of stability of the hydrogenic atom in this lan-
guage, in the following theorem:

Theorem 1 (Stability of the first kind, hydrogenic atom). There exists a constant
E0 >−∞, independent of ψ , such that

〈ψ,Hψ〉 ≥ E0 for all ψ ∈ L2(R3).

In fact, we can take E0 = −Z2/4, and this lower bound is sharp: it is uniquely
achieved by the ground state

ψ0(x) =
Z3/2
√

8π
e−Z|x|/2.

The first proof of this result, without the sharp lower bound, was achieved by
Freeman Dyson and Andrew Lenard in 1967. Elliott Lieb and Walter Thirring
greatly simplified the argument in a 1976 paper. Here we present an elementary
proof largely in the vein of Lieb’s proof, but taken from lecture notes of Michael
Loss.

The main idea behind the proof of Theorem (1) is the concept of quantum me-
chanical uncertainty. Qualitatively, uncertainty says the following: the position of
a quantum particle and its momentum cannot be simultaneously restricted. One
may think of the hydrogenic atom as a balloon filled with a compressible fluid,
with the property that while the balloon can be squeezed as tight as you wish, it
can only be done at the cost of the fluid inside gaining a large amount of momen-
tum, and correspondingly kinetic energy. This is in stark contrast to the classical
situation, in which the position and momentum of a particle can be measured ex-
actly and simultaneously.

The most famous of all uncertainty principles is Heisenberg’s:

Theorem 2 (Heisenberg uncertainty principle). Given a state ψ , let σx(ψ)2 de-
note the variance in position of the electron, and let σp(ψ)2 denote the variance
in momentum. Then there is a positive constant C independent of ψ such that

σx(ψ)2
σp(ψ)2 ≥C.
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However, Heisenberg uncertainty is not enough to imply stability, despite claims
to the contrary.1 The uncertainty principle that we will use is the following:

Theorem 3 (Coulomb uncertainty principle). For ψ ∈ H1(R3),ˆ
R3

|ψ(x)|2

|x|
dx≤ ‖∇ψ‖2‖ψ‖2.

Equality holds only if
ψ(x)∼ e−c|x|

for some constant c > 0.

Theorem (3) is an uncertainty principle in the following sense. Suppose we were
to localize ψ around the origin; that is, we increase the probability that the elec-
tron’s position is close to the nucleus. The normalization ‖ψ‖2 = 1 forces |ψ| to
take large values near the origin to compensate for the localization. This peaking
behavior of ψ is then exaggerated by the factor |x|−1, which forces ‖∇ψ‖2 to be
large since ‖ψ‖2 = 1.
From here we can immediately deduce the stability of the hydrogenic atom. We
will only show the existence of the lower bound. The proof that the lower bound
coincides with the ground state, and that of the expression for the ground state is
left to the reader.

Proof of Theorem (1). Recall that the energy of an electron in state ψ is given by

Eψ = 〈ψ,Hψ〉=
ˆ
R3
|∇ψ(x)|2 dx−Z

ˆ
R3

|ψ(x)|2

|x|
dx.

Applying Theorem 3,
Eψ ≥ ‖∇ψ‖2

2−Z‖∇ψ‖2.

The RHS is quadratic in ‖∇ψ‖2 with a global minimum at ‖∇ψ‖2 =
Z
2 . Therefore

Eψ ≥
Z2

4
− Z2

2
=−Z2

4
>−∞.

1The argument usually goes that if ψ is localized around the origin, then σx(ψ) is close to 0, so
by Heisenberg uncertainty σx(ψ) = Tψ is highly positive, which compensates for the fact that Uψ

would be highly negative for such a state ψ . What this argument misses is that nothing prevents ψ

being so that half its mass is localized at the origin, and half its mass on the moon. Then σx(ψ) is
very large, so there is effectively no useful lower bound on the kinetic energy, while Uψ can still
be arbitrarily negative for such a state. Therefore Heisenberg uncertainty cannot be used to obtain
an actual lower bound on the energy.
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Proof of Theorem (3). We recall that C∞
c (R3) is dense in H1(R3). We observe the

following:
1
|x|

= ∂xi

(
xi

|x|

)
− x2

i
|x|3

.

Summing over i = 1,2,3, we obtain

1
|x|

=
1
2

3

∑
i=1

∂xi

(
xi

|x|

)
.

Assume ψ ∈C∞
c (R3). Integration by parts now yields the identity

2〈ψ, |x|−1
ψ〉=

3

∑
i=1

ˆ
R3

ψ∂xi

(
xi

|x|

)
ψ dx

=−
3

∑
i=1

ˆ
R3

∂xi(ψψ)
xi

|x|
dx

=−
3

∑
i=1

ˆ
R3
[(∂xiψ)ψ +ψ(∂xiψ)]

xi

|x|
dx

=−2Re
3

∑
i=1
〈∂xiψ,

xi

|x|
ψ〉.

Applying Cauchy-Schwarz for the inner product 〈·, ·〉,

〈ψ, |x|−1
ψ〉=−Re

3

∑
i=1
〈∂xiψ,

xi

|x|
ψ〉 ≤

3

∑
i=1
‖∂xiψ‖2‖

xi

|x|
ψ‖2.

Now applying Cauchy-Schwarz for sums,

3

∑
i=1
‖∂xiψ‖2‖

xi

|x|
ψ‖2 ≤

(
3

∑
i=1
‖∂xiψ‖

2
2

) 1
2
(

3

∑
i=1
‖ xi

|x|
ψ‖2

2

) 1
2

= ‖∇ψ‖2‖ψ‖2,

and thus we have established

〈ψ,
1
|x|

ψ〉 ≤ ‖∇ψ‖2‖ψ‖2,

for ψ ∈C∞
c (R3). For more general ψ ∈ H1(R3), approximate |ψ| from below by

functions in C∞
c (R3), and apply monotone convergence in the LHS.
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We now treat the case of equality. If equality holds, then in particular it must hold
in our first use of Cauchy-Schwarz:

−Re〈∂xiψ,
xi

|x|
ψ〉 ≤ |〈∂xiψ,

xi

|x|
ψ〉| ≤ ‖∂xiψ‖2‖

xi

|x|
ψ‖2.

Equality in the second inequality tells us that

∂xiψ = ci
xi

|x|
ψ,

and submitting this identity with equality in the first tells us that

−Re〈ci
xi

|x|
ψ,

xi

|x|
ψ〉=−‖ xi

|x|
ψ‖2

2Re ci = ‖
xi

|x|
ψ‖2

2|ci|,

and therefore ci = −|ci|. Equality must also hold in our second use of Cauchy-
Schwarz:

3

∑
i=1
‖∂xiψ‖2‖

xi

|x|
ψ‖2 ≤

(
3

∑
i=1
‖∂xiψ‖

2
2

) 1
2
(

3

∑
i=1
‖ xi

|x|
ψ‖2

2

) 1
2

.

We thus see that
‖∂xiψ‖2 = c‖ xi

|x|
ψ‖, c≥ 0,

and therefore ci =−c for i = 1,2,3. Then

∇ψ =−c
x
|x|

ψ.

The general solution to this first-order equation is

ψ(x) = ae−c|x|,

and since ψ is square-integrable we must necessarily have c > 0.

5 More stability problems, and the role of uncer-
tainty

First, we remark that any intermediate-level undergraduate quantum mechanics
class should include a proof of Theorem 1 by explicitly solving the Schrödinger
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equation in the presence of the Coulomb potential. So what was the point of our
proof? The moral of the proof is to specifically highlight the aspects of quantum
mechanics that result in the stability of hydrogen. We saw in particular that uncer-
tainty, and uncertainty alone, is enough to demonstrate stability. We operated on
only a subset of the full axiomatic system of quantum mechanics: we did not even
need to refer to the Schr’́odinger equation, or matrix mechanics for that matter, at
all.

Moreover, the method is easily generalized to other Hamiltonians, i.e. non-Coulomb
potentials, as we discuss below. This leads us to some very entertaining applica-
tions of analysis (especially harmonic analysis) to mathematical physics. This
is not the case for explicitly solving the Schrödinger equation: while for the
Coulomb potential this is relatively straightforward, for a general potential this
is a difficult problem.

With the proof of Theorem 3 we have established stability for all isolated hydro-
genic atoms. However, this is not the only question to be answered in the study of
stability. Theorem 3 is explicitly well-suited for the study of hydrogenic atoms,
and even gives the physically correct value of the ground state. But it is woefully
inadequate for any scenario where the Hamiltonian is not the Coulomb Hamilto-
nian−∆−Z|x|−1. A way around this obstacle is to employ alternative uncertainty
principles, such as the following:

Theorem 4 (Hardy’s inequality).
ˆ
Rn
|∇ψ|2 dx &n

ˆ
Rn

|ψ|2

|x|2
dx;
ˆ
Rn
|∇ψ|p dx &n,p

ˆ
Rn

|ψ|p

|x|p
dx.

(Sharp constants are known, with equality iff ψ ≡ 0.)

Theorem 5 (Sobolev uncertainty principle).

ˆ
R3
|∇ψ|2 dx≥ 3

4
(4π

2)
2
3

(ˆ
R3

ρ
3
ψ dx

) 1
3

,

where ρψ = |ψ|2. The constant is optimal.

Corollary 6. ˆ
R3
|∇ψ|2 dx≥ 3

4
(4π

2)
2
3

ˆ
R3

ρ
5
3
ψ dx.

This constant is not optimal.
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Hardy’s inequality can be used to prove the Sobolev uncertainty principle. Hardy’s
inequality also implies the Coulomb uncertainty principle by Hölder’s inequality.
Corollary 6 follows from the Sobolev uncertainty principle by Hölder’s inequality.
Notice that we have essentially reversed bounds from the Coulomb uncertainty
principle: the behavior of ψ bounds that of ρψ from below. 5 and 6 can both be
used to prove stability of the hydrogenic atom. For example, applying 6 to with
H the hydrogenic atom Hamiltonian gives us

〈ψ,Hψ〉=
ˆ
|∇ψ|2 dx−Z

ˆ
|ψ|2

|x|
dx≥

ˆ
ρ

5
3
ψ dx−Z

ˆ
ρψ

|x|
dx.

Demonstrating a finite lower bound can then be accomplished by minimizing the
functional

J(ρ) =
ˆ

ρ
5
3 dx−Z

ˆ
ρ

|x|
dx

subject to the constraints ˆ
ρ dx = 1,ρ ≥ 0.

This is a constrained variational problem that is actually quite feasible to solve by
hand or numerically. The utility of 6 is that it eliminates the gradient in the vari-
ational problem, and variational problems are easier if they do not mix functions
and their gradients. The lower bound we obtain from this variational approach is
no longer sharp, but for the purpose of showing stability this is irrelevant. More-
over, this approach is better suited to non-hydrogenic potentials than the Coulomb
uncertainty principle, and still demonstrates the same idea: stability is a conse-
quence of the constraints due to uncertainty on the localization of position and
momentum. One example of an interesting case we can handle with this new ap-
proach is a configuration of more than two charged particles, in which case the
Hamiltonian is given by

H =−∆−W (x),

where W (x) is the electrostatic potential energy function of a many-particle sys-
tem. This would describe several scenarios: for instance, a non-hydrogenic atom
with multiple electrons, or a gas of several (possibly non-hydrogenic) atoms.
Adding even one extra charged particle drastically changes the nature of the po-
tential.

In many-particle systems we can also distinguish between two types of stability.
Suppose a many-particle system of N electrons and K nuclei is described by the
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Hamiltonian H. Let

E0 = inf{〈ψ,Hψ〉 : ‖ψ‖2 = 1,ψ ∈H},

where H =
∧N L2(R3;C2) is the Hilbert space of N-electron wavefunctions. We

say such a system is stable of the first kind if

E0 >−∞.

We say the system is stable of the second kind if

E0 ≥C(N +K),

for some constant C independent of N and K.

In many-particle systems, the property of quantum spin becomes important, be-
cause spin determines the statistical distribution of energies in a many-particle sys-
tem. Particles with half-integer spin are called fermions, and in a many-particle
system of fermions the average particle energies are governed by Fermi-Dirac
statistics. Particles with integer spin are called bosons, and their energies obey
Bose-Einstein statistics. The appropriate Hilbert spaces for the wavefunctions of
multi-particle systems depends on the fermionic or bosonic nature of the particles:
fermionic systems are described by alternating tensor powers of L2, and bosonic
systems by symmetric tensor powers, and we formulate the stability problems as
above in each case. These considerations become increasingly important as the
interparticle distance becomes comparable to the de Broglie wavelength of the
particles.

In the case of fermionic many-particle systems, there is an analogous uncertainty
principle to 6, which can be used to prove that fermionic matter is stable of the
second kind. However, bosonic matter is not stable of the second kind. The proof
relies strongly on the fact that fermionic systems must obey the Pauli exclusion
principle. In particular, the stability of fermionic matter explains the fact that
most everyday bulk matter has a well-defined volume, and that solid matter does
not give way and compress to a point. A fuller discussion of these results leads
one into a discussion of Thomas-Fermi theory.

There are further extensions of stability theory to more general situations. These
include relativistic scenarios, magnetic field interactions, and radiation field inter-
actions. Once again, uncertainty principles play a key role when proofs of stability
can be obtained.
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